metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2,4-dibromo-6-[(naphthalen-1-ylimino)methyl]phenolato- $\kappa^2 N$,O}(1,10phenanthroline- $\kappa^2 N$,N')copper(II)

Zheng Liu,^a* Li Xia Jin,^a Jin Hong Xia^b and Guang Zhao Li^a

^aDepartment of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin, 541004, People's Republic of China, and ^bInstitute of Electronic Information Engineering, Guilin University of Electronic Technology, Guilin University of Technology, Ministry of Education, Guilin, 541004, People's Republic of China Correspondence e-mail: lisa4.6@163.com

Received 28 August 2007; accepted 2 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.013 Å; R factor = 0.059; wR factor = 0.165; data-to-parameter ratio = 13.6.

In the title compound, $C_{46}H_{28}Br_4CuN_4O_2$ or $[Cu(L)_2(phen)]$ {L = 2,4-dibromo-6-[(naphthalen-1-ylimino)methyl]phenolate, $C_{17}H_{10}Br_2NO$; phen = 1,10-phenanthroline, $C_{12}H_8N_2$ }, the central Cu^{II}, which lies on a twofold axis, binds two N and two O atoms from the two Schiff base ligands and two N atoms from 1,10-phenanthroline in a distorted octahedral arrangement. In the crystal structure, $C-H \cdots Br$ hydrogen bonds link the molecules into rows along *c*.

Related literature

For related complexes of Schiff bases with transition metal ions, see: Mostafa & Haifaa (2007); Musie *et al.* (2003); Patel *et al.* (2006). For related literature, see: Mehmet *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_{17}H_{10}Br_2NO)_2(C_{12}H_8N_2) \end{bmatrix}$ $M_r = 1051.90$ Monoclinic, C2/c a = 20.288 (2) Å b = 14.5052 (18) Å c = 15.227 (2) Å $\beta = 116.977$ (2)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.274, T_{max} = 0.509$ (expected range = 0.247–0.458)

Refinement

$wR(F^2) = 0.165$ H-atom parameters constrained	$R[F^2 > 2\sigma(F^2)] = 0.059$	258 parameters
r(r) = 0.105 $r(r)$	$vR(F^2) = 0.165$	H-atom parameters constrained
$S = 0.97 \qquad \qquad \Delta \rho_{\rm max} = 0.95 \text{ e } \text{\AA}^{-3}$	S = 0.97	$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
3513 reflections $\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$	513 reflections	$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

V = 3993.5 (9) Å³

Mo $K\alpha$ radiation

 $0.38 \times 0.19 \times 0.17 \text{ mm}$

10067 measured reflections

3513 independent reflections

1877 reflections with $I > 2\sigma(I)$

 $\mu = 4.59 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.086$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$

 C15-H15\cdots Br1ⁱ
 0.93
 2.93
 3.773 (13)
 152

Symmetry code: (i) $x + \frac{3}{2}, y + \frac{5}{2}, z$.

Data collection: *SMART* (Bruker 2001); cell refinement: *SAINT* (Bruker 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker 1997); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the Soft Environment Construction Education Office of Guangxi Province (No. D203252), People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2345).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). *SMART* (Version 5.0) and *SAINT* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Mehmet, T., Duygu, E. & Ferhan, T. (2007). Spectrochim. Acta Part A, 67, 916–929.
- Mostafa, E. B. & Haifaa, E. T. (2007). Spectrochim. Acta Part A, 66, 28-36.
- Musie, G. T., Li, X. B. & Powell, D. R. (2003). *Inorg. Chim. Acta*, 348, 69–74.Patel, R. N., Nripendra Singh, V. L. N. & Gundla, R. N. (2006). *Polyhedron*, 25, 3312–3318.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2488 [doi:10.1107/S1600536807042882]

Bis{2,4-dibromo-6-[(naphthalen-1-ylimino)methyl]phenolato- $\kappa^2 N, O$ }(1,10-phenanthroline- $\kappa^2 N, N$)copper(II)

Z. Liu, L. X. Jin, J. H. Xia and G. Z. Li

Comment

Schiff bases play an important role in inorganic chemistry as they easily form stable complexes with most transition metal ions (Mostafa & Haifaa, 2007, Musie *et al.*, 2003, Patel *et al.*, 2006). We report herein the synthesis and crystal structure of (I), Fig 1, a mononuclear Cu(II) complex of the new Schiff base ligand 2,4-dibromo-6-((naphthalen-1-ylimino)methyl)phenolate and 1,10-phenanthroline. The copper^{II} cation lies on a twofold axis and is coordinated by two N and two O atoms from the Schiff base and two N atoms from 1,10-phenanthroline, in a slightly distorted octahedral geometry.

In the crystal weak, non-classical C-H···Br hydrogen bonds link the molecules in rows along c, Fig 2.

Experimental

1-naphthylamine (0.286 g, 2 mmol) and 3,5-Bibromo-2-hydroxy-benzaldehyde (0.560 g, 2 mmol) were mixed in ethanol and stirred for 30 min at room temperature to yield the Schiff base 2,4-dibromo-6-((naphthalen-1-ylimino)methyl)phenol. A mixture of this Schiff base (0.201 g, 0.5 mmol), CuSO₄·5H₂O₂ (0.125 g, 0.5 mmol), phen (0.198 g 0.1 mmol,) and 6 drops of triethylamine in 5 ml e thanol and 5 ml acetonitrile was sealed in a 30 ml Teflon-lined stainless steel vessel, which was heated at 333 K for 7 days under autogenous pressure. On cooling to room temperature blue crystals of the title compound (I) were produced (yield: 53%, based on Cu).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C).

Figures

Fig. 1. A view of (I), showing 30% probability displacement ellipsoids.

Fig. 2. Crystal packing of (I) with H-bonds drawn as dashed lines.

$Bis\{2,4-dibromo-6-[(naphthalen-1-ylimino)methyl]phenolato-\kappa^2 N, O\}(1,10-phenanthroline-\kappa^2 N, N') copper(II)$

$[Cu(C_{17}H_{10}Br_2NO)_2(C_{12}H_8N_2)]$	$F_{000} = 2068$
$M_r = 1051.90$	$D_{\rm x} = 1.750 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1985 reflections
a = 20.288 (2) Å	$\theta = 2.8 - 20.6^{\circ}$
<i>b</i> = 14.5052 (18) Å	$\mu = 4.59 \text{ mm}^{-1}$
c = 15.227 (2) Å	T = 298 (2) K
$\beta = 116.977 \ (2)^{\circ}$	Block, blue
$V = 3993.5 (9) \text{ Å}^3$	$0.38\times0.19\times0.17~mm$
7 - 1	

Data collection

Bruker SMART CCD area-detector diffractometer	3513 independent reflections
Radiation source: fine-focus sealed tube	1877 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.086$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 24$
$T_{\min} = 0.274, T_{\max} = 0.509$	$k = -16 \rightarrow 17$
10067 measured reflections	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier mapLeast-squares matrix: fullHydrogen site location: inferred from neighbouring
sites $R[F^2 > 2\sigma(F^2)] = 0.059$ H-atom parameters constrained $wR(F^2) = 0.165$ $w = 1/[\sigma^2(F_o^2) + (0.0811P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 0.97	$(\Delta/\sigma)_{max} = 0.001$
3513 reflections	$\Delta\rho_{max} = 0.95~e~\text{\AA}^{-3}$
258 parameters	$\Delta \rho_{min} = -0.73 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.5000	0.93455 (7)	0.2500	0.0392 (4)
Br1	0.37169 (5)	0.70105 (6)	0.02414 (6)	0.0636 (3)
Br2	0.62496 (6)	0.47645 (6)	0.17224 (8)	0.0864 (4)
N1	0.6262 (3)	0.9081 (4)	0.2840 (4)	0.0421 (15)
N2	0.4717 (3)	1.0413 (4)	0.1537 (4)	0.0404 (15)
01	0.4819 (3)	0.8458 (3)	0.1455 (3)	0.0430 (12)
C1	0.6420 (4)	0.8241 (5)	0.2785 (5)	0.0437 (19)
H1	0.6907	0.8064	0.3181	0.052*
C2	0.5920 (4)	0.7527 (5)	0.2168 (5)	0.0398 (18)
C3	0.5152 (4)	0.7679 (5)	0.1568 (5)	0.0404 (18)
C4	0.4749 (4)	0.6892 (5)	0.1040 (5)	0.0435 (19)
C5	0.5061 (5)	0.6039 (5)	0.1086 (5)	0.052 (2)
Н5	0.4772	0.5543	0.0731	0.063*
C6	0.5824 (5)	0.5933 (5)	0.1682 (6)	0.051 (2)
C7	0.6236 (5)	0.6661 (5)	0.2209 (5)	0.049 (2)
H7	0.6741	0.6582	0.2605	0.058*
C8	0.6805 (4)	0.9648 (5)	0.3581 (6)	0.0457 (19)
С9	0.7164 (5)	0.9372 (5)	0.4543 (6)	0.061 (2)
Н9	0.7083	0.8785	0.4719	0.073*
C10	0.7658 (6)	0.9981 (7)	0.5273 (7)	0.085 (3)
H10	0.7919	0.9781	0.5921	0.101*
C11	0.7751 (5)	1.0838 (7)	0.5035 (8)	0.087 (3)
H11	0.8062	1.1236	0.5528	0.104*
C12	0.7393 (5)	1.1154 (5)	0.4061 (8)	0.066 (3)
C13	0.6910 (4)	1.0555 (5)	0.3300 (7)	0.053 (2)
C14	0.6534 (5)	1.0870 (6)	0.2316 (7)	0.066 (2)
H14	0.6228	1.0475	0.1816	0.079*

C15	0.6629 (7)	1.1759 (8)	0.2112 (10)	0.097 (4)
H15	0.6373	1.1969	0.1467	0.116*
C16	0.7096 (7)	1.2367 (7)	0.2837 (12)	0.102 (4)
H16	0.7158	1.2966	0.2669	0.122*
C17	0.7461 (6)	1.2080 (7)	0.3789 (10)	0.088 (3)
H17	0.7760	1.2494	0.4272	0.105*
C18	0.4844 (4)	1.1253 (4)	0.1971 (5)	0.0370 (17)
C19	0.4695 (4)	1.2085 (5)	0.1460 (6)	0.049 (2)
C20	0.4396 (5)	1.2025 (6)	0.0433 (6)	0.060(2)
H20	0.4288	1.2559	0.0056	0.072*
C21	0.4263 (5)	1.1177 (6)	-0.0020 (6)	0.067 (3)
H21	0.4063	1.1134	-0.0702	0.080*
C22	0.4434 (4)	1.0386 (5)	0.0560 (5)	0.050(2)
H22	0.4346	0.9814	0.0251	0.060*
C23	0.4850 (5)	1.2925 (5)	0.2001 (6)	0.067 (3)
H23	0.4742	1.3484	0.1664	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0522 (8)	0.0356 (7)	0.0274 (7)	0.000	0.0161 (6)	0.000
Br1	0.0580 (6)	0.0703 (6)	0.0482 (5)	-0.0060 (5)	0.0115 (4)	-0.0159 (4)
Br2	0.0961 (9)	0.0469 (6)	0.0961 (8)	0.0138 (5)	0.0260 (7)	-0.0145 (5)
N1	0.044 (4)	0.039 (3)	0.041 (4)	-0.002 (3)	0.018 (3)	-0.005 (3)
N2	0.042 (4)	0.047 (4)	0.032 (4)	-0.001 (3)	0.017 (3)	0.000 (3)
01	0.052 (3)	0.042 (3)	0.030 (3)	0.003 (3)	0.014 (2)	-0.002 (2)
C1	0.046 (5)	0.050 (5)	0.035 (4)	-0.003 (4)	0.018 (4)	-0.006(3)
C2	0.048 (5)	0.041 (4)	0.030 (4)	-0.006 (4)	0.017 (4)	-0.006(3)
C3	0.058 (5)	0.040 (4)	0.027 (4)	-0.004 (4)	0.023 (4)	-0.002 (3)
C4	0.053 (5)	0.048 (4)	0.030 (4)	-0.002 (4)	0.019 (4)	-0.001 (3)
C5	0.078 (7)	0.041 (4)	0.035 (4)	-0.008 (5)	0.023 (5)	-0.009(3)
C6	0.063 (6)	0.041 (4)	0.047 (5)	0.004 (4)	0.022 (4)	-0.001 (4)
C7	0.056 (5)	0.043 (4)	0.042 (5)	0.003 (4)	0.019 (4)	0.002 (3)
C8	0.041 (5)	0.046 (4)	0.048 (5)	-0.003 (4)	0.017 (4)	-0.007 (4)
C9	0.064 (6)	0.056 (5)	0.047 (5)	0.003 (5)	0.011 (4)	-0.012 (4)
C10	0.089 (8)	0.077 (6)	0.044 (6)	0.012 (6)	-0.008 (5)	-0.021 (5)
C11	0.059 (7)	0.085 (7)	0.087 (8)	0.004 (6)	0.008 (6)	-0.048 (6)
C12	0.051 (6)	0.045 (5)	0.093 (8)	0.005 (5)	0.025 (6)	-0.026 (5)
C13	0.041 (5)	0.048 (5)	0.074 (6)	-0.001 (4)	0.028 (5)	-0.011 (4)
C14	0.061 (6)	0.066 (6)	0.073 (7)	0.003 (5)	0.034 (5)	0.008 (5)
C15	0.098 (9)	0.083 (8)	0.141 (11)	0.017 (7)	0.083 (9)	0.041 (8)
C16	0.093 (10)	0.056 (7)	0.193 (15)	-0.004 (7)	0.096 (11)	0.016 (8)
C17	0.066 (7)	0.060 (7)	0.145 (11)	-0.010 (6)	0.056 (8)	-0.025 (7)
C18	0.034 (4)	0.035 (4)	0.042 (4)	-0.002 (3)	0.017 (4)	0.001 (3)
C19	0.048 (5)	0.041 (4)	0.059 (5)	0.000 (4)	0.026 (4)	0.008 (4)
C20	0.074 (6)	0.060 (5)	0.051 (5)	0.011 (5)	0.032 (5)	0.022 (4)
C21	0.091 (7)	0.069 (6)	0.035 (5)	0.011 (5)	0.024 (5)	0.020 (4)
C22	0.064 (5)	0.054 (5)	0.033 (4)	-0.001 (4)	0.023 (4)	-0.001 (3)

C23	0.076 (7)	0.044 (4)	0.081 (6)	0.009 (5)	0.036 (6)	0.019 (4)
Geometric para	meters (Å, °)					
Cu1—O1		1.948 (4)	С9—	-H9		0.9300
Cu1—O1 ⁱ		1.948 (4)	C10	—C11		1.332 (13)
Cu1—N2 ⁱ		2.029 (5)	C10	—H10		0.9300
Cu1—N2		2.029 (5)	C11-			1.400 (13)
Cu1—N1 ⁱ		2.402 (6)	C11-	—H11		0.9300
Cu1—N1		2.402 (6)	C12	—C13		1.424 (11)
Br1—C4		1.893 (8)	C12	—C17		1.431 (13)
Br2—C6		1.890 (7)	C13	—C14		1.413 (11)
N1—C1		1.273 (8)	C14	—C15		1.361 (12)
N1—C8		1.426 (9)	C14	—H14		0.9300
N2—C22		1.330 (8)	C15	—C16		1.394 (16)
N2—C18		1.355 (8)	C15	—H15		0.9300
O1—C3		1.288 (8)	C16	—C17		1.360 (15)
C1—C2		1.455 (9)	C16	—H16		0.9300
C1—H1		0.9300	C17	—H17		0.9300
C2—C7		1.399 (9)	C18			1.393 (9)
C2—C3		1.421 (10)	C18	$-C18^{1}$		1.438 (13)
C3—C4		1.421 (9)	C19	—C20		1.401 (10)
C4—C5		1.377 (9)	C19	—C23		1.424 (10)
C5—C6		1.403 (11)	C20			1.375 (10)
C5—H5		0.9300	C20	—H20		0.9300
C6—C7		1.360 (10)	C21			1.393 (10)
C^{-1}		1.368(10)	C21	—П21 H22		0.9300
C_{0} C_{1}^{2}		1.308 (10)	622			1 257 (16)
$C_0 = C_{10}$		1.429(10)	C23			0.0200
C9—C10		1.417 (11)	C25	—п23		0.9300
01—Cu1—O1 ¹		97.3 (3)	C8-	-C9C10		120.0 (8)
$O1$ — $Cu1$ — $N2^1$		169.1 (2)	C8–	-С9—Н9		120.0
O1 ⁱ —Cu1—N2 ⁱ		91.5 (2)	C10	—С9—Н9		120.0
01—Cu1—N2		91.5 (2)	C11-	C10C9		120.4 (9)
O1 ⁱ —Cu1—N2		169.1 (2)	C11-	—С10—Н10		119.8
N2 ⁱ —Cu1—N2		80.5 (3)	С9—	-C10-H10		119.8
O1—Cu1—N1 ⁱ		86.0 (2)	C10			121.6 (8)
O1 ⁱ —Cu1—N1 ⁱ		81.9 (2)	C10	—С11—Н11		119.2
N2 ⁱ —Cu1—N1 ⁱ		101.7 (2)	C12-			119.2
N2—Cu1—N1 ⁱ		92.4 (2)	C11-			119.8 (8)
01—Cu1—N1		81.9 (2)	C11-			122.8 (10)
O1 ⁱ —Cu1—N1		86.0 (2)	C13			117.3 (10)
$N2^{i}$ —Cu1—N1		92.4 (2)	C14			120.5 (8)
N2— $Cu1$ — $N1$		101.7 (2)	C14			122.2 (7)
$N1^{i}$ —Cu1—N1		161.6 (3)	C12			117.3 (8)

C1—N1—C8	118.5 (6)	C15—C14—C13	118.9 (10)
C1—N1—Cu1	114.5 (5)	C15—C14—H14	120.5
C8—N1—Cu1	116.4 (4)	C13—C14—H14	120.5
C22—N2—C18	117.6 (6)	C14—C15—C16	122.3 (12)
C22—N2—Cu1	128.5 (5)	C14—C15—H15	118.8
C18—N2—Cu1	113.9 (4)	C16—C15—H15	118.8
C3—O1—Cu1	125.3 (4)	C17—C16—C15	119.7 (10)
N1—C1—C2	126.9 (7)	C17—C16—H16	120.1
N1—C1—H1	116.5	С15—С16—Н16	120.1
С2—С1—Н1	116.5	C16—C17—C12	121.2 (10)
C7—C2—C3	120.9 (6)	С16—С17—Н17	119.4
C7—C2—C1	116.0 (7)	С12—С17—Н17	119.4
C3—C2—C1	123.1 (6)	N2-C18-C19	124.2 (6)
01—C3—C2	125.3 (6)	N2-C18-C18 ⁱ	115.9 (4)
O1—C3—C4	119.8 (7)	C19—C18—C18 ⁱ	120.0 (4)
C2—C3—C4	114.9 (7)	C18—C19—C20	116.4 (7)
C5—C4—C3	124.1 (7)	C18—C19—C23	118.9 (7)
C5—C4—Br1	117.6 (6)	C20—C19—C23	124.7 (7)
C3—C4—Br1	118.4 (5)	C21—C20—C19	120.2 (7)
C4—C5—C6	118.5 (7)	C21—C20—H20	119.9
С4—С5—Н5	120.7	C19—C20—H20	119.9
С6—С5—Н5	120.7	C20—C21—C22	118.9 (7)
C7—C6—C5	119.9 (7)	C20—C21—H21	120.5
C7—C6—Br2	121.9 (6)	C22—C21—H21	120.5
C5—C6—Br2	118.2 (6)	N2—C22—C21	122.8 (7)
C6—C7—C2	121.7 (7)	N2—C22—H22	118.6
С6—С7—Н7	119.2	C21—C22—H22	118.6
С2—С7—Н7	119.2	C23 ⁱ —C23—C19	121.1 (4)
C9—C8—N1	121.5 (7)	C23 ⁱ —C23—H23	119.4
C9—C8—C13	120.8 (7)	C19—C23—H23	119.4
N1—C8—C13	117.4 (7)		
O1—Cu1—N1—C1	-42.1 (5)	Br2—C6—C7—C2	179.3 (5)
O1 ⁱ —Cu1—N1—C1	55.8 (5)	C3—C2—C7—C6	-0.3 (11)
N2 ⁱ —Cu1—N1—C1	147.2 (5)	C1—C2—C7—C6	178.7 (6)
N2—Cu1—N1—C1	-132.0 (5)	C1—N1—C8—C9	-49.5 (10)
N1 ⁱ —Cu1—N1—C1	7.1 (5)	Cu1—N1—C8—C9	93.2 (8)
O1—Cu1—N1—C8	173.7 (5)	C1—N1—C8—C13	136.6 (7)
O1 ⁱ —Cu1—N1—C8	-88.4 (5)	Cu1—N1—C8—C13	-80.8 (7)
N2 ⁱ —Cu1—N1—C8	3.0 (5)	N1-C8-C9-C10	-175.2 (8)
N2—Cu1—N1—C8	83.8 (5)	C13—C8—C9—C10	-1.4 (12)
N1 ⁱ —Cu1—N1—C8	-137.1 (5)	C8—C9—C10—C11	3.1 (15)
O1—Cu1—N2—C22	7.0 (6)	C9-C10-C11-C12	-2.7 (16)
O1 ⁱ —Cu1—N2—C22	-136.8 (10)	C10-C11-C12-C13	0.6 (15)
N2 ⁱ —Cu1—N2—C22	179.5 (8)	C10-C11-C12-C17	177.6 (10)
N1 ⁱ —Cu1—N2—C22	-79.0 (6)	C11—C12—C13—C14	178.9 (8)
N1—Cu1—N2—C22	89.1 (6)	C17—C12—C13—C14	1.8 (12)

O1—Cu1—N2—C18	-172.5 (5)	C11—C12—C13—C8	1.0 (12)
O1 ⁱ —Cu1—N2—C18	43.7 (14)	C17—C12—C13—C8	-176.1 (8)
N2 ⁱ —Cu1—N2—C18	-0.1 (4)	C9—C8—C13—C14	-178.4 (8)
N1 ⁱ —Cu1—N2—C18	101.4 (5)	N1-C8-C13-C14	-4.5 (11)
N1—Cu1—N2—C18	-90.5 (5)	C9—C8—C13—C12	-0.6 (11)
O1 ⁱ —Cu1—O1—C3	-35.9 (5)	N1-C8-C13-C12	173.4 (7)
N2 ⁱ —Cu1—O1—C3	107.5 (12)	C12—C13—C14—C15	-1.5 (13)
N2—Cu1—O1—C3	150.6 (6)	C8—C13—C14—C15	176.3 (8)
N1 ⁱ —Cu1—O1—C3	-117.2 (6)	C13-C14-C15-C16	1.5 (15)
N1—Cu1—O1—C3	49.0 (5)	C14—C15—C16—C17	-1.7 (17)
C8—N1—C1—C2	172.1 (7)	C15—C16—C17—C12	2.0 (17)
Cu1—N1—C1—C2	28.7 (9)	C11—C12—C17—C16	-179.1 (10)
N1—C1—C2—C7	177.3 (7)	C13-C12-C17-C16	-2.1 (15)
N1—C1—C2—C3	-3.7 (11)	C22—N2—C18—C19	0.2 (11)
Cu1—O1—C3—C2	-41.1 (9)	Cu1—N2—C18—C19	179.8 (6)
Cu1—O1—C3—C4	141.3 (5)	C22—N2—C18—C18 ⁱ	-179.4 (7)
C7—C2—C3—O1	-177.1 (6)	Cu1—N2—C18—C18 ⁱ	0.2 (10)
C1—C2—C3—O1	4.0 (10)	N2-C18-C19-C20	-0.1 (11)
C7—C2—C3—C4	0.6 (9)	C18 ⁱ —C18—C19—C20	179.5 (8)
C1—C2—C3—C4	-178.3 (6)	N2-C18-C19-C23	179.7 (7)
O1—C3—C4—C5	177.7 (6)	C18 ⁱ —C18—C19—C23	-0.7 (13)
C2—C3—C4—C5	-0.1 (10)	C18—C19—C20—C21	0.1 (12)
O1—C3—C4—Br1	-3.7 (9)	C23—C19—C20—C21	-179.6 (9)
C2—C3—C4—Br1	178.5 (5)	C19—C20—C21—C22	-0.3 (13)
C3—C4—C5—C6	-0.7 (11)	C18—N2—C22—C21	-0.4 (11)
Br1-C4-C5-C6	-179.3 (5)	Cu1—N2—C22—C21	-179.9 (6)
C4—C5—C6—C7	1.0 (11)	C20—C21—C22—N2	0.4 (13)
C4—C5—C6—Br2	-178.9 (5)	C18—C19—C23—C23 ⁱ	1.3 (16)
C5—C6—C7—C2	-0.6 (12)	C20—C19—C23—C23 ⁱ	-179.0 (10)
Symmetry codes: (i) $-x+1$, y , $-z+1/2$.			

Hvdrogen-bond geometry	(Å.	°)
ilyalogen bona geometry	(11)	

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C15—H15···Br1 ⁱⁱ	0.93	2.93	3.773 (13)	152
Symmetry codes: (ii) $x+3/2$, $y+5/2$, <i>z</i> .				

Fig. 1

Fig. 2